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DynaSim is an open-source MATLAB/GNU Octave toolbox for rag prototyping of neural
models and batch simulation management. It is designed to sped up and simplify
the process of generating, sharing, and exploring network mdels of neurons with one
or more compartments. Models can be speci ed by equations diectly (similar to XPP
or the Brian simulator) or by lists of prede ned or custom moel components. The
higher-level speci cation supports arbitrarily complex ppulation models and networks
of interconnected populations. DynaSim also includes a lge set of features that simplify
exploring model dynamics over parameter spaces, running siulations in parallel using
both multicore processors and high-performance computer tusters, and analyzing and
plotting large numbers of simulated data sets in parallelt klso includes a graphical
user interface (DynaSim GUI) that supports full functiongl without requiring user
programming. The software has been implemented in MATLAB t@nable advanced
neural modeling using MATLAB, given its popularity and a gvang interest in modeling
neural systems. The design of DynaSim incorporates a novelchema for model

speci cation to facilitate future interoperability with ther speci cations (e.g., NeuroML,
SBML), simulators (e.g., NEURON, Brian, NEST), and web-bed applications (e.g.,
Geppetto) outside MATLAB. DynaSim is freely available attpt//dynasimtoolbox.org.

This tool promises to reduce barriers for investigating dyamics in large neural models,
facilitate collaborative modeling, and complement otheradols being developed in the
neuroinformatics community.

Keywords: dynamical systems, neural models, GNU octave, neuro science gateway, graphical user interface, code

generation, code:matlab

1. INTRODUCTION

DynaSim (http://dynasimtoolbox.org) is a MATLABAATLAB, 2017 and GNU Octave Eaton

et al., 201ptoolbox developed for rapid prototyping of large neural modatsi batch simulation
management. It enables researchers to focus on model sl@tatead of implementation, while
making it easy to share and explore models with the rest of theneonity. It facilitates rapid

prototyping of neural models by enabling networks of neuronthvaine or more compartments
to be speci ed by any combination of: (1) equations with comenal mathematical notation
(Figures 1 2), similar to XPP Ermentrout, 200pand the Brian simulatorGoodman and Brette,
2009, (2) built-in MATLAB functions, and (3) prede ned, mechanisally-meaningful model
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A B
eqna=1 Lorenz equations
's=10; r=27; b=2.666"
'dx/dt=s* (y-X); x(0)=1"
'dy/dt=r*x-y-x*z; y(0)=2"
'dz/dt=-b*z+x*y; z(0)=.5" N

Fr

data=dsSimulate (eqns) ;
plot(data.popl x,data.popl z)

FIGURE 1 | Simulating a simple system of ordinary differential equatis in DynaSim.(A) MATLAB code using the DynaSim toolbox. Simulation is achied by passing
a model speci cation to the DynaSimdsSimulate  function. Simulated data are returned in a DynaSirdata structure. (B) (x,z) phase plane of Lorenz system.

A B
i Izhikevich neuron with noisy drive
'a=.03; b=-2; c=-50; d=100; vpeak=35; vr=-60' >
'T(t)=70*(t>200&t<800)* (1+.5*rand) "' =0 j J J ( J
'dv/dt=.01*(.7* (v—vr)* (v+40)-utI(t)); v(0)=vr' %_50 B, 1g v, I W 9, (9
'du/dt=a* (b* (v-vr)-u); u(0)=0" o
'if (v>vpeak) (v=c; u=utd)' Do 70 e 50 0 000
}: i
data=dsSimulate (eqns, "tspan', [0 1000]); =
figure — 0
subplot (2,1,1); plot(data.time,data.popl v) ?,_ 50
subplot (2,1,2); plot(data.time,data.popl I) =
- % 2 0 50 £00 1000
time (ms)

FIGURE 2 | Simulating an ODE system with conditional reset and stochadg drive. (A) MATLAB code using the DynaSim toolbox. The model is speci ed sing a cell
array of strings,eqns, listing equations de ning parameters, an input functiori(t) , ODEs with ICs, and a conditional reset. The stochastic inpuises the built-in
MATLAB functionrand . (B) Plot of the time-varying input and simulated output.

objects Figures 3 4), similar to objects in Brian, mechanisms in implemented in MATLAB because MATLAB lacks advanced
NEURON (Hines and Carnevale, 1997and nodes/connections tools for neural modeling, despite its popularity, especially
in NEST Gewaltig and Diesmann, 200 DynaSim's higher-level among neuroscientists, and a growing interest in modeliagnal
speci cation, described below, easily scales to arbiyradmplex  systems. DynaSim incorporates the best features of existing
population models and networks of interconnected populationsimulators to |l this niche in MATLAB, and it leverages
(Figure 4), and does not require signi cant “boilerplate” code for MATLAB's extensive capabilities to provide features that are
even very large networks. lacking in other simulators.

In addition to neural modeling, it provides a simple, DynaSim includes a large set of features to simplify the
general-purpose interface for numerically integrating atidals  processes of exploring model dynamics over parameter spaces
supported by MATLAB's built-in solvers for ordinary di erentia  (Figure 5), running separate simulations in parallel on multicore
equations. Its compatibility with GNU Octave enables it toprocessors and computer clusters, as well as parallel analysis
be used for free by those without a MATLAB license. Itand plotting of large numbers of simulated data sets. It
can also be used for free through a web browser using thiacreases simulation speed, compared to common MATLAB
Neuroscience Gateway web portal (https://www.nsgportgl.orgimplementations, using a combination of optimized vector
DynaSim is most similar to the Brian simulator in spirit, computation, C compilation, and parallel simulation. It indies
scope, and its ability to simulate models based on equatisns a graphical user interface (DynaSim GUI) that supports full
well as libraries of pre-existing model objectSopdman and functionality without requiring user programmingFgure 6).
Brette, 200R However, DynaSim provides both script-basedThe GUI is a useful aid for teaching about the dynamics of neura
and easy-to-use graphical interfaces as well as better suppsetstems and is more accessible to experimentalists andrgtude
for analyzing and exploring model dynamics over parametewithout a background in mathematics and programming. The
space than other neural simulators. The software has beeatesign of DynaSim incorporates a novel schema for model
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FIGURE 3 | Simulating a biophysically-detailed neuron model using nehanisms. (A) DynaSim model leveraging existing model objects for iINaKDR, and iM
currents to simplify the speci cation of a detailed neuron mdel. (B) IB response to tonic current.

FIGURE 4 | Simulating weak PING rhythms using a model speci cation struttire. (A) The conceptual object-based architecture of a biophysicdy-detailed network of
excitatory (blue) and inhibitory (red) cell§B) Mapping the object-based architecture onto a DynaSinspecification structure that contains all the high-level
information necessary to construct the complete system of guations for the full model using objects from a library of jrexisting ionic mechanisms.

speci cation to facilitate interoperability with other ta®butside This paper begins with Worked Examples demonstrating the
MATLAB including simulator-independent speci cations (g.g. simplicity and power of DynaSim for rapid prototyping and
NeuroML, Gleeson et al., 201BBML, Hucka et al., 2003 model exploration. Next, DynaSim's Technical Details w#l b
simulators (e.g., NEURON;lines and Carnevale, 199Brian, described, followed by a comparison to other simulators. The
Goodman and Brette, 200NEST, Gewaltig and Diesmann, paper concludes with a discussion of future developments.
2007, model repositories (e.g., Open Source Brain, http://

www.opensourcebrain.org), and web-based applications, (... WORKED EXAMPLES

Geppetto, http://www.geppetto.org). This tool aims to simplify

the investigation of dynamics of complex neural network misde In DynaSim, users pass a model speci cation to the function
facilitate collaborative modeling, and complement otherlsoo dsSimulate , which integrates the model equations and
being developed in the neuroinformatics community. returns a data structure containing the simulated data. Mede
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FIGURE 5 | Searching parameter space using the DynaSim toolboxA) MATLAB code using the DynaSindsSimulate  function with thevary option to specify a
set of 9 simulations varying two parameterslépp in population E andtauD of the connection from I to E).(B) Raster plots produced bydsPlot  with the
plot_type  option given an array of DynaSindata structures containing results for all 9 simulations(C) Plots produced by dsPlotFR  showing how mean ring
rates for E and | populations change as a function of the two véed parameters.

can be speci ed using strings or a MATLAB structure, and largeonditional statements, ODEs and their initial conditiofi€’s).
models can be specied easily from combinations of existingo demonstrate the generality of this approach, the Lorenz
model components. The following examples will demonstratequations l(orenz, 1963

the speci cation of increasingly complex models and advanced

DynaSim capabilities provided by optional arguments in

dsSimulate d
DSy X
2.1. Example 1: Lorenz Equations dt
Any system of ordinary di erential equations (ODEs) can be dy Drx y xz (1)
modeled in DynaSim by listing equations using conventional dt
mathematical notation. Equations can be listed in a singiagt dj D bzCxy
or a cell array of strings and may contain parameters, fumstjo dt
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FIGURE 6 | DynaSim Graphical User Interface showing the weak PING model.

are de ned in the cell arraggns in Figure 1A and the system is a MATLAB expression that evaluatesttoe or false and

is numerically integrated by passing this user speci catio@.( actions is a semicolon-delimited list of statements to execute
egns) to the DynaSim functiordsSimulate . Integration in  whencondition  istrue .Conditionals are evaluated on every
DynaSim is described in the Technical Details. The results atime step after the model state is updated according to the
plotted in Figure 1B. The same approach can be applied todi erential equations. They can be used to update state vas&gbl

simulate ODE-based rate models of neural systems. or parameters when their prescribed conditions are satis ed.
2.2. Example 2: I1zhikevich Spiking Neuron )

Model 2.3. Example 3: Hodgkin-Huxley-Type

The Izhikevich neuron Ighikevich, 200p is a system of Spiking Neuron Models

di erential equations with a conditional update: The construction of large models with many equations can

be greatly simplied by utilizing components from a library
of pre-existing model objects. For instance, conductaresed

dv D .01(.7¢ w)(vC40) uCI(t) neuron models often include component ion currents (i.e.,
dt ionic mechanisms) that may be used in models of dierent
d ap e . . _
au Dab(v w) U @) neuron pres. A. regular §p|k|ng (RS) neuron mcludes. fast spike
dt generating sodium (e.giNaF ) and potassium (e.giKDR)

if v> Vpea thenvD cuD uC d. currents, while an intrinsically bursting (IB) neuron posses the

same spike-generating currents plus a slower potassium durren
Figure 2A demonstrates the specication of an Izhikevich (e.g.,iM) providing a second time scale separating bursts of
model using a cell array of strings and a noisy time-spikes. Both models rely on the saif&aF andiKDR currents
varying input function that leverages the built-in MATLAB while the IB model incorporates an additioni® current.
function rand . Input and simulated output are plotted in DynaSim expedites the construction of such models by
Figure 2B. Conditional updates are incorporated using theleveraging pre-existing model objects (eijaF,iKDR,iM ).
notation: if(condition)(actions) , wherecondition Models incorporate reusable objects by including in their
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equations: (1) placeholders with an “@” sign for terms thalABLE 1 | Representative list of model objects packaged with the defalt library.

rely on external model objects; and (2) a list of the external
. .. . . Object
model objects (e.g., ionic mechanisms) de ning the terms

Description

to be inserted wherever the appropriate placeholders appegg,  mechanisms

Figure 3A demonstrates the specication of a biophysically-poisson
detailed IB neuron using a placeholde®@current , in the

voltage dynamicsdV/dt , and a list of ionic mechanisms
{iINaF,iKDR,iM} , de ning currents that a ect the voltage

noise

' ostim

Non-homogeneous poisson process
Source of gaussian noise
Source of tonic stimulation

dynamics.Figure 3B plots the simulated response to a tonic intrinsic mechanisms

injected current. The IB neuron could be rapidly convertedina
into a RS neuron simply by reducing the list of mechanismsk
to {iNaF,iKDR} . Alternatively, the neuron model could be v
made arbitrarily more complex by adding as many ion currentgcar
as desired to the mechanism list. DynaSim comes pre-packaggea
with a variety of commonly used model objects (Jable 1for  \ap
a representative list). This feature is described furthetha

Technical Details section below. CaBuffer

Fast sodium current Hodgkin and Huxley, 1952

Fast potassium current Hodgkin and Huxley, 1952

Slow, M-type potassium current {[raub et al., 2003

T-type calcium current Ching et al., 2010

Calcium-dependent potassium current Durstewitz et al., 2000
Persistent sodium current Durstewitz et al., 2000
Hyperpolarization-activated cation h currentGhing et al., 2010
Calcium buffer (Durstewitz)

Connection mechanisms

2.4. Example 4: Weak PING Spiking

Network Model

The construction of large network models (see the Benchingrk iGABAa
section for limits on network size) is greatly simplied
by introducing an additional model object: the population.
Connections between populations and dynamics of populatiofMPA
constituents depend on lower-level mechanisnfégure 4A  IGAP

demonstrates an object-based network architecture witb twiCOM

IAMPA

iGABAb

AMPA synapse: sigmoid threshold with excitatory parameter
(Kopell et al., 2000

GABAx synapse: sigmoid threshold with inhibitory parameters
(Kopell et al., 2000

GABAg synapse (Ching et al., 2010

NMDA synapse Koch and Segev, 1999
Ohmic gap junction

Axial current for connecting two compartments

populations, named and | , each with dynamics determined

L . . . Populations
by ionic mechanisms. Voltage dynamics of tBepopulation P )
s . . LIF Leaky integrate-and- re neurons
are shaped by intrinsic ion currents, naméth and ik , and h Dhikevich Ohikevich 200
an inhibitory synaptic current, name@SABAa, that depends - Zhikevich neurons fehikevich, 2003
ML Morris-Lecar neurons {/orris and Lecar, 1981)

on the state of the presynaptic population. Similarly, the
population has voltage dynamics shaped by the same intrinsf¢™
currents (na , ik ) and an excitatory synaptic currentfMPA)
that depends on thée population. Due to the kinetics of the
prede ned ionic mechanisms and the parameters used in this
example, the network generates a weak pyramidal-interneuron
network gamma (PING) rhythmEorgers and Kopell, 2095
DynaSim expedites the process of specifying object-baS('éIjS
network models using a DynaSispecification structure
that organizes information about the population-level eqoas
and the mechanisms on which they depend. To facilitate thand combine large networks of multicompartment neurons
computational implementation of an object-based conceptuahs well as examples demonstrating the construction of large
network model Figure 4A), information is organized into two cortical and thalamic models can be found in the online
elds of the specification structure:populations and documentation.
connections . Each population has its owequations Patterns of connectivity between source and target
sub eld, which can link to external model objects, as well apopulations are speci ed using connectivity matrices that appear
sub elds specifying thename and size of the population. in the equations of their connection mechanisms. Optionally
When populations have more than a single neuron, initialconnectivity matrices can be de ned in an external function
conditions (e.g., initial voltages) and model parameterg.(e the same MATLAB script as thspecification structure
maximal synaptic conductances) can be made heterogeneoasd stored as a parameter for the appropriate mechanism (see
across the population by setting their values using arrayk witthe dsDemos script included with DynaSim and the online
one element per neuron. Connections between population&Getting started” tutorial for exampleslyigure 4Bdemonstrates
are made by connection mechanisms (e.g., synaptic currentd)e DynaSim speci cation of the weak PING model shown in
speci ed in theconnections eld. See the Technical Details Figure 4A, as well as raster plots and an overlay of voltage traces
section below for further information on thepecification showing a 40 Hz network oscillation in response to a tonic
structure. Tutorials on using thgpecification to construct drive. This example uses the default all-to-all connectiaty

FitzHugh-Nagumo neurons FitzHugh, 1955

Hodgkin-Huxley neurons with iNa and iK currentsH{odgkin and
Huxley, 1952

Cortical Regular Spiking neuronsi{ramer et al., 2009

Cortical Intrinsically Bursting neuronsi{ramer et al., 20089
Cortical Fast Spiking interneuronsi{ramer et al., 2008

Cortical Low Threshold Spiking interneuronsiramer et al., 2008
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the IAMPA and iGABAa mechanisms in the default DynaSim expanded to include any number of additional populations and
library. An extended example specifying custom connectivity network-forming connections between them (see Example 4).

the PING model can be found online in the “Getting started” Thus, DynaSim o ers a range of model speci cation methods
tutorial. Connectivity matrices can be made sparse by ggttinfrom writing detailed equations (for computational sciest,
sparse_flag to 1 in the call todsSimulate . Similar to  engineers, and mathematicians) to simply listing objectsftioe

the mechanism-based speci cation of the IB neuron in Examplenodel library, enabling speci cation of complex models witiho

3, the network model can be rapidly adjusted and made awriting equations (for experimentalists and students).

complex as desired by simply updating mechanism lists for .

each population and for the connections between populationg2-6- Example 6: Exploring Parameter Space
Additionally, a con gurable bu er of spike times, determindy ~ Of the Weak PING Model

upward threshold crossings, can be accessed using the edser®ne of the strengths of DynaSim is its support for exploring
variablestspike_pre and tspike_post , for computing how system behavior changes as a model is systematically
spike-timing dependent functions (e.g., for spike-timing-varied. In the simplest case, exploration involves simutatin
dependent plasticity, STDP); see the examples in the DynaSimodel with varying sets of parameters followed by analysis an
toolbox and the online documentation for more information. visualization of the results over the parameter space. This ca
It is worth noting that any network model specied using a easily be performed in DynaSim by setting thery option of
specification structure can be equivalently speci ed usingdsSimulate  using a compact speci cation of the parameter
the method of explicitly listing all equations as described i space to explore. For instance, the space can be speci ed using a
Examples 1-2. However, this is least preferred, since it ismoset of triplets (as ifFigure 5A) with each element indicating the
tedious, time-consuming, and error-prone than using prededn  values to use for parameters of populations and/or connections;

model objects. the space to explore is then constructed from the Cartesian
product of the parameter values from the set of triplets. Aside

2.5. Example 5: Script_Based Modeling from Cartesian products, DynaSim o ers multiple forms of

Without Writing Equations speci cation to accommodate di erent patterns in parameter

pspace.
Exploring the weak PING model is demonstrated in

to construct neural models without writing any equatiorls_Flgure 5A where 9 simulations are speci .ed with three values
r each of two parameters: the amplitude of the current

. . . L f
This approach enables experimentalists and students withoU?! . . L
mathematical pro ciency to easily explore neural dynamicd an Injected into cells of the E populatiospp ) and the inhibition

dependence on various stimulation protocols and biophysicaﬂme cqnstant ,Of the |nh.|b|tory Syf‘apse ontq E (_:glt&b@ )-
details. For instance, a population of 100 noise-driven nesro DynaSim provides multiple functions for visualizing results

with Hodgkin-Huxley (HH) kinetics can be specied and over parameter space. For instandggure 5B shows raster
simulated using the following script: plots produced by the DynaSimisPlot function called

in Figure 5A, while Figure 5C produced by the DynaSim
dsPlotFR function, shows the dependence of average ring
rates on varied parameters.

Prede ned populations can be combined and remixed wit
prede ned mechanisms using thepecification structure

% Specify predefined HH neuron model

s.populations(1).equations="HH', The DynaSimdsSimulate ~ function o ers three important
s.populations(1).size=100; options for increasing the speed of simulation. The benchreark
% Add Gaussian noise _ described below show that the speed of most simulations can be
s.populations(1).mechanism_list={'noise’}; increased by up to a factor of 10x by setting tenpile_flag
% Specify noise amplitude option to 1
s.populations(1).parameters

={'noise_amp',1e3}; data = dsSimulate(s,'vary',vary,

% Run simulation

h ‘compile_flag',1);
data = dsSimulate(s);

which directsdsSimulate  to compile the simulation into

C code (i.e., MATLAB MEX compilation) before numerical
SeeTable 1for a list of prede ned neuron models that can be integration. Furthermore, the time required to run a set of
used without requiring the user to enter any equations. Thesimulations can be decreased by running multiple simulations
example population can be converted into a model of leakgimultaneously in parallel either on the user's local mactine
integrate-and- re neurons, or any other population ifeble ,  on a computer cluster. Simulations can be run in parallel on the
by simply changing the prede ned neuron model speci ed in theuser's machine using thgarfor  function from the MATLAB
equations  eld. See the online documentation for examplesParallel Computing Toolbox; this feature can be activated by
swapping out prede ned models, including neurons with setting theparfor_flag option to 1:
parameterized refractory periods. Furthermore, new medrani
can be added to prede ned neuron models by simply addinglata = dsSimulate(s,'vary',vary,
them to the mechanism list. Thepecification can be ‘parfor_flag',1);
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Additionally, a cluster can be used to parallelize a set ofode from a login node (see Example 6 for details on cluster
simulations. Clusters have “login nodes” that users caress;c computing):

and “compute nodes” that jobs access. Typically, users submit

jobs to a batch queueing system from the login node, andd = pwd; % where to save results

the queueing system controls the execution of the code odsSimulate(s,'analysis_functions',

compute nodes. As described in the Technical Details section @my_analysis,'vary',vary,

DynaSim automates the creation and submission of jobs that ‘cluster_flag',1,'study_dir',D);

run simulations, perform analyses, and plot results on computeesults = dsimportResults(D,@my_analysis);

nodes of a cluster with the Sun Grid Engine queueing system.

This feature can be activated on a login node by setting th&nalysis results are saved tstudy_dir and can be

cluster_flag option to 1, thestudy dir  option to a loaded using the dsimportResults function. For a
directory where jobs should save outputs, and then using thsingle simulation,results will contain the output from
DynaSimdsimport  function to load all simulated data: ‘my_analysis .' For a set of simulationstesults is an
array of structures with each element containing the output
D = pwd; % where to save data from ‘my_analysis ' for one simulation in the batch.
dsSimulate(s,'vary',vary, Multiple analysis functions can be applied to each simulated
‘cluster_flag',1, data set by passing a cell array of function handles using the
'study_dir',D); analysis_functions option. Post-simulation hooks work
data = dsimport(D); the same when simulations are run serially or in parallel on the

local machine. These approaches can be used to apply a complex
and possibly custom set of analyses to each simulated data set
with options to store only analysis results (i.e., minimizskd
space requirements) and to run analyses in parallel on di erent
nodes of a compute cluster or di erent cores of a given machine.

Alternatively, multiple simulated data sets can be analyzed
after all simulations are complete and data sets are loaded in
memory using thelsAnalyze function:

All three options ¢tompile_flag , parfor_flag , and
cluster_flag ) can be used in combination to achieve
multiplicative bene ts. With minimal setup, these capabdii
can facilitate utilization of extremely powerful compute stier
resources for the user. These options are described funthéei
Technical Details section.

2.7. Example 7: Batch Analysis and

Visualization of Simulated Data
The DynaSim simulator returns simulated data that can beryis pynasim function supports parallel processing using the
manipulated directly by the user using any built-in capalehti parfor_flag option:

of MATLAB. Beyond that, DynaSim provides post-simulation -

hooks that enable the same analysis and/or plotting f“nCtiO'Pesults = dsAnalyze(data,@my
to be applied serially or in parallel to all output data sets -
(e.g., from a parameter sweep). At present, DynaSim provides

analysis functions for computing ring rates, power spectra;rha combination of built-in support for common as well

and coherence; it provides plotting functions for generating,s cstom analysis and visualization functions provided by

staf[e variable trac_:es, raster_ plots, an_d power plots. See tB?/naSim is designed to meet all needs of modelers and
online documentation for details. DynaSim also supports @uomst experimentalists seeking to explore model dynamics.

analysis and plotting functions. Custom functions must take

a DynaSimdata structure as their rst argument and return 2.8, Example 8: Exploring the Weak PING
results in a structure; they may have any number of addiﬁonaMode| in DynaSim GUI

results = dsAnalyze(data,@my_analysis);

analysis,
'parfor_flag',1);

arguments: In addition to the DynaSim functions available for scriptdeal
model building and simulation, DynaSim provides a unique
function results = my_analysis(data) graphical user interface (DynaSim GUI) that enables users to
% do something access all of DynaSim's features without MATLAB programming.
% return output in structure 'results’ The DynaSim GUI provides a highly exible and dynamic
end environment for interactive, real-time exploration of howoafel

functions and dynamics vary with parameters, as well as how
Analysis functions are specied as function handles usingarying model architecture changes the system behavioy. An

the analysis_functions option in dsSimulate , model can be explored using the GUI by passing its speci cation
and plotting functions are specied similarly using the to the functiondynasim . For instance, the GUI can be used to
plot_functions option. For instance, simulations varying explore the weak PING model de ned irigure 4by executing:

model parameters (see theary option in Figure 5A) can dynasim(s) . Figure 6 shows how the weak PING model
be run and analyzed using theny_analysis ' function in  appears in DynaSim GUI. Alternatively, the model could be built
parallel on di erent nodes of a cluster by executing the follogvi  from scratch using the graphical interface.
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A special feature of the DynaSim GUI is the ability toand the same connection mechanism can be reused to connect
interactively modify a model during ongoing simulation atml  di erent pairs of populations. Thus, mechanism objects enable
observe the e ects without needing to restart the simulationequations to be speci ed once and reused an arbitrary number
This feature is useful for interactively exploring models andf times, and both types of objects enable equations to be
manually tuning model parameters. This feature is o ered by fe speci ed without requiring the tedious assignment of unique
simulators. variable/function names each time the same equations appear i

The DynaSim GUI is especially useful as a teaching tool ana model.
for researchers without programming experience. Researchers
who prefer writing code may still nd it useful for prototyping 3.1.2. DynaSim Structures for Higher-Level
and model exploration before choosing a model to investigat&peci cation, Lower-Level Model De nition, and
further in MATLAB scripts using functions of the DynaSim Simulated Data

toolbox. Speciers for the higher-level, more abstract model
specification structure are grouped intpopulations

3. TECHNICAL DETAILS (each including aname, size , masterequations , optional
intrinsic mechanism list , and parameters ) and

3.1. Modeling connections between populations (each including

Models can be specied by the user with a cell array ofa direction , connection mechanism list , and

strings (Examples 1-2), a single string (Example 3), or parameters ) (Figure 7A). Connectivity between populations

specification structure (Examples 4-5), based on ais specied using connectivity matrices de ned in connectio

combination of master equations (using standard matheo#ti mechanisms between presynaptic source and postsynaptic
notation and built-in MATLAB functions) and optional model target populations. Models speci ed by the user with strings are
objects from an existing library (Examples 3-5). This prosidealways associated internally with a population (hamed “popl” by
the user with multiple ways of specifying a model dependinglefault). Model speci cation is divided intpopulations  and
on the complexity of the model and the level of mathematicatonnections  to facilitate network modeling. A population
detail the user wishes to provide. Internally, DynaSim cotsve of multi-compartment neurons can be implemented by
user-supplied information into a standardized high-levelspecifying di erent compartments using theompartments
specification structure, which is subsequently converted eld in exactly the same way di erent populations of point
into a lower-level model structure. Thmodel structure is then neurons are specied using theopulations eld. Two
used to automatically generate a suitable implementationién  compartments of the same neuron can be connected by
mex- le, or function handle) based on the desired simulatio specifyingconnections , for instance, using the ohmic axial
method. The results of simulation are returned in a DynaSincurrent mechanismiCOMin Table 1) from the DynaSim library
data structure. Simulation in DynaSim always involves(see DynaSim demos for examples with explicit compartmental
sequential processing of the following DynaSim structures: dimensions); other forms of inter-compartmental conneitiv
can be implemented using custom connection mechanisms.
More details on modeling multicompartment neurons can be
found in the online tutorials.
The lower-level, more detailetchodel de nition structure
includes a single set of model elememarameters (scalars,
3.1.1. Model Objects for Populations and strings)fixed variables (matrices and scalar expressions),
Mechanisms functions (of time and state variables), an@DESICs
Equations de ne parameters, variables, functions, and QDEslescribing system dynamics (i.e., the evolution of stat@bes
Model objects are ways of grouping equations to facilitate thever time) Figure 7B). It is derived automatically from the
rapid construction of larger models. There are two types oDynaSimspecification and all associated model objects.
objects: populations and mechanisms. Populations represemodel elements are always assigned unique names in the
discrete systems of interest like populations of cells, iddial  lower-level model structure by adding an object-specic
cells, or compartments (e.g., soma, dendrite). Mechanismsamespace identi er (e.g., “popl_" for population object “popl”;
represent smaller-scale components that a ect the dynamicpopl Na " for mechanism object “Na” in population “popl”) to
of populations (e.g., ion currents); they are called intrinsi the reusable names given in the object de nition (e.g., “pdpl_
mechanisms when they depend only on the state of théor state variable “V” in population “popl”; “popl_Na_m” for
population they aect (e.g., sodium and potassium currents)state variable “m” in mechanism “Na”). The same unique state
and they are called connection mechanisms when they dependriable and function names are used in the outmldta
additionally on the state of other populations (e.g., synaptistructure storing the results of simulation.
currents). DynaSim comes prepackaged with a library of
common model objects (se€Bable 1 for a representative list). 3.1.3. Linking Equations Across Model Objects
Each objectis assigned a unique name to enable the dupliaaitio Once namespace identi ers are used to assign uniqgue names
parameter, variable, and function names in di erent obje@tse  to all parameters, variables, and functions, then the eqnatio
same intrinsic mechanism can be reused in di erent populationsfrom lower-level mechanisms need to be combined with the
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FIGURE 7 | Object-based architecture, standardized speci cation, aml DynaSim models.(A) Object-based architecture and standardized speci cation.Discrete
model objects (populations and mechanisms) are shown in bd| any object can be stored independently in the library andeused as components of larger models.
There is no limit on the number of objects in a DynaSim model.i€lds of the standardized speci cation structure are underhed. Each population can have a list of
intrinsic mechanisms; each directed pair of source and targt populations can have a list of connection mechanisms. Opdnal objects are enclosed in parentheses.
A string-based speci cation will be internally associated \ith a default population “popl” in the standardized speci cdion structure. (B) The standardized speci cation
structure and model objects are parsed to generate a singleet of equations describing the full model given the separatsets of equations for each object.

equations from higher-level populations and other lower-levearbitrary dynamical systems, not only neural models. In piagti
mechanisms belonging to the same population. ODEs can bitis not necessary to understand linkers to build models in
directly combined, but something extra is required to inaie DynaSim when working with existing objects from the library.
how mechanism functions a ect the dynamics of populationFor instance, “@current+=" is used in all prepackaged ionic
state variables de ned outside the mechanism; for instanoev ~ mechanisms; thus, for conductance-based neural modelss user
the sodium current “INa,” de ned in mechanism “Na” a ects only need to list the ionic mechanisms they wish to include in
the voltage “V” of population “popl.” Linking objects can bea population or connection between populations with suitable
a di cult concept to grasp at rst, but understanding it is not dynamics. Additional mechanisms can be exibly added or
necessary to use DynaSim. removed simply by updating the appropriate mechanism list
Linking mechanism elements (functions or variables) towithout being concerned with linkers. This frees the modéte
equations de ned in other objects is achieved by performing‘ocus on the mechanisms that are most relevant for their nfmde
substitution guided by “linkers’Rigure 8). A linker is a string and the parameters of those mechanisms.
Ehat a’;’)p_e_ars in two obje_cts_; in one objec_t (e_.g., popul§t|oré.1.4. Simulation Batches
popl”)itis a placeholder indicating the location in an equation
(e.g., ODE “dV/dt") where an element of a di erent object (.9
function “INa") should be inserted; in the second objecty(e.

Simulation batches are sets of simulations that systeniigtica
vary some aspect of a base model; each simulation in a batch
. SN e " involves some set of modi cations to the base model. More
‘r‘nec”hanlsm _Na) It !ndlcates the (_element (_e.g., funCtIonprecisely,modifications are ways of modifying speci ers
_INa) “to be mseruted into the r_st object. _For Instance, t_he (most commonly parameter values) in the base model's high-
linker "@current * can be used in population-level dynamics levelspecification . Simulation batches are speci ed using

‘dv/dt=@current a_long WiEh th? mechanism-level linker the dsSimulate vary option, which is expanded into a set
statement@current += INa "todirect DynaSimto perform ¢ nqgifications for each simulation (see Example 4 for
addition assignment, after adding namespace identi ersyyitional details). A “study” in DynaSim is a processingioha

resuling  in  “d(popl_V)/dt=@current+popl_Na_INa.” that includes a simulation batch plus downstream analysis and
Compound assignment operators (e.g., “+=" and “—=") enablg;s  ,ajization.

the same linker to be used in multiple mechanisms; for inséanc

“@current+=INa” in mechanism “Na’ and “@current+="IK” in 3.2. Simulation

mechanism “K” would produce “d(popl_V)/dt=@current+popl Models are simulated in DynaSim by passing the user's model

_Na_INa +popl_K_IK.” All linkers are removed from the speci cation to thedsSimulate function along with options

resulting ODE system before simulation; e.g., producing thepecifying details of the simulatiordsSimulate  provides

desired nal ODE “d(popl_V)/dt=pop1_Na_INa+popl_K_IK.” options to control the solver and machine(s) used for numerical

The online documentation explains how to achieve greateintegration, the location of outputs, and the details of latc

modularization for linking objects with di erent linker nams. simulation. Depending on the options speci edsSimulate
Linking objects is the most unconventional aspect of modelingautomates the construction of the full system of equatiorss, a

in DynaSim; it enables the exible, modular construction ofdescribed above, and the generation of MATLAB functions that
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FIGURE 8 | Linking equations across population and mechanism objectsMechanism linker statements with addition assignment (g., @current+=IK) direct DynaSim
to substitute functions INa and IK into population-level dymaics “dv/dt,” where the linker appears (i.e., @current). In ihexample, intrinsic mechanisms are de ned in
script and added to specification structure in amechanisms eld.

perform the numerical integration. DynaSim supports custonfor using MATLAB's advanced numerical methods. All m- les
xed-step integration (Euler, 2nd-order Runge-Kutta, anth4 generated are saved by default and available for examination
order Runge-Kutta) as well as MATLAB's built-in variable-and re-use. By default, all time points for all state variglaee
step solvers (e.g., ode23, oded5). The integration metbod riecorded. The number of time points recorded can be decreased
speci ed by thesolver option. When xed-step simulation is by setting thelownsample_factor  optionto aninteger value
desired, DynaSim generates and executes a standalonetiratle greater than 1. Functions and spike times can be recorded as
explicitly integrates the system of equations using therddsi well using themonitor keyword, as described in the online
method. When built-in solvers are used, DynaSim automdlfica “Getting started” tutorial. Sedigure 9 for additional details
generates an m- le with the appropriate format and passes ibn the internal processing performed by DynaSim during each
as a function handle to the desired built-in MATLAB function; simulation. DynaSim GUI provides an additional interactive
consequentlydsSimulate  can serve as a simpler interfaceinterface for real-time simulation using the Euler methodtwi
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FIGURE 9 | Single simulation work ow. From the user perspective, the foctional interface to DynaSim involves specifying a modeking strings or a DynaSim
specification structure, passing it todsSimulate , and obtaining a DynaSimdata structure with the results of simulation. InternallydsSimulate  standardizes
the supplied speci cation using the dsCheckSpecification function. The standardizedspecification structure is converted into a DynaSimmodel structure
(Figure 7) using thedsGenerateModel  function, which adds object-speci c namespace identi ers and links variables and functions across model objects

(Figure 8). Asolve_file for numerical integration is automatically generated frorthe model structure by dsGetSolveFile according to simulator options.
Simulated data is then obtained by evaluating theolve_file . DynaSim structures are shown in bold. Functions are follogad by “().” Simulator options are enclosed
in parentheses.

a model stored in an updatable anonymous function that iCUBA) and one using Hodgkin-Huxley (HH) type neurons
evaluated at each time step. (COBAHH). Network size was varied across simulations to
A common criticism of simulating computationally intensive include 2,2, ...,7,250 20,250 2!,..,250 27 cells. In all

models in MATLAB is the time required for simulation. An cases, 0.5 s of model dynamics was simulated.

important method of increasing the simulation speed is awda We began by running benchmarks to investigate performance
for users with the MATLAB Coder toolbox. When available, thewhen cells were not connected via synapses, @oiodman and
compile_flag option can be used to instructsSimulate Brette (2008)in order to evaluate the core simulation speed of
to compile the automatically-generated m- le into a mex- le intrinsic neuron properties alone. We rstran CUBA simulatisn
with C code. As discussed in the Benchmarking section belowirigure 10A), where cells consist solely of a single leakage current
depending on model details, simulating models using compilednd a thresholded voltage reset. Here, for small networé#) b

C code can reduce simulation time by a factor of 10x. DynaSim and compiled Brian 2 take0.1 s to complete the
simulation while uncompiled Brian 2 takes4 s, owing largely to
3.3. Batch Management startup costs. Beyond networks of 1,000 cells, however, DynaS

One advantage of DynaSim over other neural simulators itakes 50% longer than uncompiled Brian 2 andL00% longer

its extensive support for processing sets of simulations, (i.ethan compiled Brian 2. Next, we ran COBAHH simulations
simulation batches). In practice, one is often interestedidnv  lacking synapsed~{gure 10B. These cells consisted of typical
behavior changes as some aspect of a model is varied. TaafacilitHodgkin-Huxley sodium, potassium, and leakage currentsnAs
model exploration, DynaSim o ers (1) a compact speci cation ofthe CUBA comparison, DynaSim and compiled Brian 2 are faster
the parameter space to explore, (2) the ability to perform mudtipl for smaller networks; however, uncompiled and compiled BAan
simulations in parallel on di erent cores of a single machinetake less time than DynaSim for networks of more than 100 cells.
(using the Parallel Computing toolbox) and dierent nodes Next, we compared the COBAHH model between DynaSim
of a high performance computer cluster (using automated joland Brian 2 using synapses with either low (2%) connection
creation and thegisub command), (3) functions for analysis and densities Figure 10Q or high (90%) densitiesHigure 10D).
visualization of how behavior varies over parameter spacg, atWe used synapses that were more complex than in the original
(4) automated management of large sets of simulation resgie benchmarks Brette et al., 20Q7in two ways: our synapses

online documentation and Example 6 for details. used “clock-driven,” continuous equations so that they Vddae
updated for all time points instead of just events, and, theesfor
3.4. Benchmarks the synaptic updates were not uniform, requiring them to be

We implemented, adapted, and ran benchmarks taken from ealculated individually. Similarly to the previous synapssle
review of simulator tools Rrette et al., 2007 We compared benchmarks, we chose this method to test the raw synapse
DynaSim with and without C compilation to the Brian 2 simulation speed, since many models require more synaptic
simulator with and without @C compilation (Stimberg et al., history than just the time of a presynaptic event. DynaSimdsuil
2019. We built our code from the original codebase fora matrix the size of all synapses for all cells and computes the
the review, available in ModelDBVicDougal et al., 20)7at  synaptic activity using matrix multiplication at every timeept
http://modeldb.yale.edu/83319, including adapting Briansion  this implies that DynaSim simulation speed is independent of
1 code for Brian 2. Both our benchmark code and datdhe connection density. In contrast, Brian 2 uses a synaptic
are available online on GitHub at http://github.com/asoplat data structure that only contains synapses between neurons
dynasim-benchmark-brette-2007. Two neuron model typeswerwith non-zero connection weights. This means that the time
considered: one using integrate-and-re (IF) type neuronstaken to simulate a high-density network in Brian 2 can be
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FIGURE 10 | Benchmarks. Time to simulate vs. network size for all bencharks run; network sizes were 1, 2, 4, 8, 16, 32, 64, 128, 250, 50, 1,000, 2,000, 4,000,
8,000, 16,000, or 32,000 cells. Red lines indicate uncompéd Brian 2 simulation time for given network type and size, gen lines indicate time for equivalent C++
compiled Brian 2 simulation, blue lines indicate time for agvalent DynaSim simulation without using MEX compilatioand black lines indicate time for equivalent
DynaSim simulation using MEX compilatior(A) Benchmarks for simple “current-based” (CUBA) simulationsonsisting of cells containing just leakage currents and no
synapses. (B) Benchmarks for Hodgkin-Huxley conductance-based (COBAHIHsimulations of cells containing Na, K, and leakage curresiand no synapses.(C)
Benchmarks for COBAHH simulations, but with AMPA and GABA-Aynaptic connections at a low density of 2% connection probaility. (D) Benchmarks for
COBAHH simulations, but with AMPA and GABA-A synaptic conngions at a high density of 90% connection probability. Notehat we could not simulate the
highest-sized network (32,000 cells) using compilation wter DynaSim, as the resulting data structures were found to ®too large to be computed by MATLAB's
compiling framework. DynaSim simulations using compilain worked successfully using network sizes of 16,000 cellsand those without compilation could
successfully simulate 32,000 cells.

much longer than that of a low-density network, as one can seeompilation. The bene t of compilation was most signi cantrfo
when comparingFigure 10Cto Figure 10D. With low-density  networks with fewer than 100 cells, and compiled simulations
(2%) synaptic connections as iRigure 10C and >100 cells, failed when networks had 32,000 cellEgure 10. We found
both uncompiled and compiled Brian 2 perform simulationsan exception for the unusual case of modeling hundreds of
consistently faster than DynaSim. However, given the samebmpletely isolated neurons (i.e., without synaptic connecjp
network with a high-density (90%) of synaptic connections inunderstanding the reason for this is complicated by the
Figure 10D and more than 100 cells, both uncompiled andproprietary nature of the MATLAB Coder. Similarly, Brian 2
compiled Brian 2 can take >10x longer than DynaSim. Focompilation was almost always either as fast or faster than
instance, when running a simulation of 32,000 cells at 90%ncompiled Brian 2, particularly due to the loss of a startupei
synaptic connection density, DynaSim took3 days to run the Brian 2 compilation speed converged to the speed of uncompiled
simulation, while uncompiled Brian 2 estimated it would takesimulations, except for the most intensive simulations using
40 days with comparable “clock-driven" synapses (see below flarge populations connected with a high density, shown in
discussion of “event-driven" synapses), and compiled Brian Rigure 10D, here, compilation brought back strong gains (30%
would still take an estimated 2 weeks. faster), implying a speedup in total simulation time of weeks.
In every benchmarking scenario, we tested DynaSim witfror Brian 2 compilation, we used the GCC compiler with
and without C compilation. In all common scenarios, DynaSimthe highly optimizing options “-w,” “-O3;" “- ast-math,” and
with compilation was 1-10x faster than DynaSim without“-march=native” since we wanted to push Brian 2 to its speed
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limits, and could fairly benchmark DynaSim at its fastesdiagt ~ spatial representation for model objects, although workaas.
these numbers. exist. DynaSim has been tested on MATLAB versions 2013a
These benchmarks illustrate a frequent answer to the questi through 2017b as well as on the latest stable version of GNU
“which simulator should | use?": it depends. For networkctave (4.2.1). Several features are not currently supported
consisting of hundreds of cells, both Brian 2 and DynaSinby GNU Octave including the DynaSim GUI, MATLAB
typically have simulation speeds almost within an order ofCoder for MEX compilation, and parallel simulations using
magnitude of each other. DynaSim excels at larger networkzarfor . Despite these limitations, we believe DynaSim o ers a
with high synaptic interconnectivity when synaptic dynamicscompetitive mixture of both ease of use and simulating power,
depend on more than spike arrival times (e.g., subthresholdspecially owing to the built-in parallelization capabilitéex its
dynamics) and thus require clock-driven computation (i.e.,user-friendliness for computational neuroscience novices
updating synapses at every time step). However, when synaptic Finally, DynaSim is an open-source project with a growing
dynamics depend only on spike arrival times (i.e., eventairiv _community of active developers. Progress has already been
synapses are acceptable), Brian 2 is able to simulate largeade at adding support for event-driven synapses, wrappers

networks orders of magnitude faster (not shown). for popular neuroscience analysis and visualization toolboxe
. in MATLAB (e.g., FieldTrip,Oostenveld et al., 20l EEGLAB,

3.5. Summary of Advantages, Limitations, Delorme and Makeig, 20Q4and Chronux, Bokil et al.,

and Future Directions 2010, data-driven optimization for parameter estimation (e.g.,

In this age of incredible computing power, performance is noparticle Itering, Meng et al., 2014 and code conversion for
longer the “one true metric" by which all programs are comparednteroperability with other simulators via NeuroMLG]eeson
(Rudolph and Destexhe, 200With so many competing neural et al., 201 For the latest features and documentation on
simulators, the choice also depends on ease of use, time BynaSim, see http://dynasimtoolbox.org.

onboard, reproducibility, documentation quality, cross-{féam

usability, amount of programming knowledge required, etc AUTHOR CONTRIBUTIONS

Similar to most popular neural simulators, DynaSim supports the

Linux, macOS, and Windows operating systems, and it provide3S designed and implemented the core of the DynaSim Toolbox
the most comprehensive MATLAB-based solution to neurabnd Graphical User Interface, wrote the paper, and created
modeling. In contrast, comprehensive python-based sol#ionthe online user documentation. AS was the rst alpha tester,
have been developed and promoted by NeuralEnsemble (http#elped promote the package, ran benchmark simulations, and
neuralensemble.org) and the Human Brain Projeletatkram  contributed to the Benchmarks section. SA was the second
et al., 201). Compared to many existing neural simulatorsalpha tester, added MEX compilation via the MATLAB Coder,
(e.g., Brian 2, NEURON, NEST, XPP), DynaSim o ers betteand maintained GNU Octave compatibility. DS added parallel
support for batch analysis and visualization (Example 7) angrocessing via the MATLAB Parallel Computing Toolbox. ER
more options for varying model elements across large setselped establish a core team of developers and a development
of simulations that can be easily parallelized on multicoravork ow with version control. BP-P helped add support for
processors and computer clusters (Example 6). It also providgmrallel analysis and plotting of large numbers of simulated
a uniquely-powerful graphical interface (Example 8) that éesb datasets. NK supervised the project and encouraged labgrator
the exploration of complex neural models by users withoutmembers to implement models in DynaSim. All authors reviewed
programming experience or mathematical expertise. For usethe paper.

with mathematical pro ciency, DynaSim oers a “purely”

equation-based model specication, similar to Brian 2 andFUNDING

XPP, but lacking in NEURON and NEST. For users desiring

to build larger models from existing components, DynaSimThis material is based upon research supported by the U. S. Army
o ers a modular, object-based speci cation, similar to BrianResearch O ce under award number ARO W911NF-12-R-0012-
2, NEURON, and NEST, but lacking in XPP. DynaSim als®2, the U. S. O ce of Naval Research under award number ONR
bene ts from supporting MATLAB's built-in functions in models MURI N00014-16-1-2832, and the National Science Foundation
and leveraging MATLAB's powerful tools for analyzing andunder award number NSF DMS-1042134 (Cognitive Rhythms
visualizing simulated data; its compatibility with GNU Oeéa Collaborative: A Discovery Network).

and availability on the Neuroscience Gateway provide many

of the same benets for free to users without a MATLAB ACKNOWLEDGMENTS

license.

At present, DynaSim has several limitations compared t&We thank Grant Fiddyment for his thoughts on intuitive
other simulators: (1) it computes synaptic currents at eveanet syntax, Sophia Voychehovski Prater for her expert advice on
step (i.e., synaptic computation is “clock-driven”) rathérah  user experience design, the Neuroscience Gateway team for
only computing when triggered by a synaptic event, (2) it doesupporting DynaSim via the NSG web portal, as well as Julia
not manage physical units, thus making users responsible f@@hartove, Yujia Zhou, Natalie Adams, and other members ef th
ensuring consistency, and (3) it does not provide an expliciKopell Laboratory for alpha testing the DynaSim toolbox.
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