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Building an Atlas-based PO, RT, and VPL Circuit

1. Morphology: First, we obtain reconstructions of individual neurons
from experimental data. We then "clone" these cells, varying and
swapping neurites for each cell-type. For the thalamus, we use 3
classes of M-type: TC, IN, and RT. (Iavarone et al., 2023)

2. Electrophysiology: Next, using ion channel parameters optimized 
against experimental data, we characterize different classes of
neurons. These electrophysiological E-types are then fit to their 
relevant morphologies. For the thalamus, we use 5 E-type classes
and organize our celltypes into 5 unique ME-type classes. We 
have generated a combined 267,487 unique thalamus cells.

  The precise scale of our 
modeling allows us to
comprehensively analyze 
our connectivity from 
brain-region level to 
individual synapses and
boutons. We are currently
in the process of validating
this model and a full
thalamus model. 

  If you work with the rodent
thalamus or rodent-based
structural connectivity, 
please get in touch!

  Unfortunately,  single-cell
experimental data of 
synaptic ultrastructure is
extremely difficult to obtain,
limiting the existing data
available for validation.

  Synaptic "pruning" (Step 7)
of our modeling is an 
iterative process, and must
be calibrated on a per-
region basis. 

4. Orientations: Following anatomy, we
compute the "principal axis" of cell
directions in every voxel. We use a
Gaussian blur applied to a scalar
field, where non-RT thalamus is 
the source and RT is the target.

5. Distances: We generate meshes for
different regions of the thalamus. We 
then use ray-tracing to compute the 
distances from voxels to the regions, 
which we use to establish boundaries
for dendrites and axons.

6. Placement: Combining all prior steps, 
ME-type cells are placed in voxels 
according to their corresponding 
regional densities, orientations, and 
distances. 

7. Synapses: Potential synapses are identified 
at relevant appositions ("touches") between 
celltypes. Synapses are then "pruned" to 
appropriate levels (Reimann et al., 2015).
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3. Densities: Using the spatial mapping of the Allen Mouse Brain Atlas 
(CCFv3)  (Wang et al., 2020) and volumetric neuron densities from 
the Blue Brain Cell Atlas (Rodarie et al., 2022) and literature, we 
assign our cells to different thalamic regions in space. 

8. Final Circuit: The circuit ultimately comprises 89,752 total cells,  
76,351,201 total synapses, and 3.576 mm3 volume.

Thank you to Elvis Boci and Cyrille Favreau for visualization help! This study was supported by funding to the Blue Brain Project, a research center 
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RT: 38,617 neurons

TC: 50,103 PO: 25,721
VPL: 24,382

IN: 1,032 PO: 103
VPL: 929
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Multiscale data integration to generate atlas-based biophysical 
modeling of first- and higher-order mouse thalamic nuclei
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