Dynamics of propofol anesthesia in the thalamocortical loop

Austin E. Soplata, PhD
Post-doc in Emery Brown lab at MGH/HMS/MIT,
Collaboration with Nancy Kopell lab at BU

EEG oscillations under propofol anesthesia

What causes Alpha
 Oscillations (8-14 Hz) in
 propofol anesthesia?

Image from (Mukamel et al., 2014)

Propofol alpha is same frequency as Thalamic Sleep Spindles (8-16 Hz)

1996: Computer Models of Thalamic Spindles

GABA_B

$$C_{m}\dot{V}_{T} = -g_{L}(V_{T} - E_{L}) - I_{T} - I_{h} + I_{KL}$$

$$-I_{Na} - I_{K} - I_{GABA_{A}T} - I_{GABA_{B}} \quad (1)$$

Hyperpolarized TC Cell T-current and H-current

$$C_m \dot{V}_{\rm T} = -g_{\rm L}(V_{\rm T} - E_{\rm L}) - I_{\rm T} - I_{\rm h} + I_{\rm KL} - I_{\rm Na} - I_{\rm K} - I_{\rm GABA_AT} - I_{\rm GABA_B}$$
 (1)

Our Thalamic Circuit

Propofol direct effects

• Increases \bar{g}_{GABA_A} ("strength of inhibition")

• Increases τ_{GABA_A} ("how long inhibition lasts")

• Decreases \bar{g}_H (TC cell H-current strength)

Decreases Background Excitation

Can we get propofol-like alpha without GABA enhancement? **No!**

Propofol dose affects the likelihood of alpha

Enhanced GABA_A inhibition enables alpha

Baseline Silent/DepolarizationHigh-dose Sustained Alpha

Alpha activity does occur in rat cortex and higherorder thalamus LFP (shown) under propofol

EEG oscillations under propofol anesthesia

- What causes Alpha
 Oscillations (8-14 Hz) in propofol anesthesia?
- What causes Slow Wave Oscillations (SWO, 0.1-2 Hz) in propofol anesthesia?

Image from (Mukamel et al., 2014)

Thalamocortical Circuit

Simulated Circuit Model Network

Cortical Slow Wave Mechanism: K(Na)-current

Image from (Compte et al., 2003)

EEG oscillations under propofol anesthesia

- What causes Alpha Oscillations (8-14 Hz) in propofol anesthesia?
- What causes Slow Wave Oscillations (SWO, 0.1-2 Hz) in propofol anesthesia?
- What causes Trough-max and Peak-max Phase-Amplitude Coupling between alpha and SWO?

Trough-max and Peak-max can occur on different SWO cycles

- Cycle-by-cycle variation in coupling driven by
 - Randomness
 - Degree of cortical synchronization

Trough-max occurs at TC->PY synaptic currents

Thalamocortical TC→PY AMPA synapses during Low-dose Propofol Trough-max PAC

Intracortical PY→PY AMPA synapses during Low-dose Propofol Trough-max PAC

Peak-max occurs at all cortical synaptic currents

Thalamocortical TC→PY AMPA synapses during Low-dose Propofol Peak-max PAC

Intracortical PY→PY AMPA synapses during Low-dose Propofol Peak-max PAC

AND PAIN MEDICINE

Low-dose Propofol Peak-max

Model coupling resembles experimental data

Proportion of Trough/Peak-max depends on dose-dependent acetylcholine (ACh)

- Propofol Direct Effects:
 - Increases GABA-A
 - Decreases \bar{g}_H
- Propofol INDIRECT Effects:
 - Decreases ACh, causing:
 - Increased K(Na)-current strength
 - Increased PY→PY excitatory AMPA strength
 - nAChRs decrease TC→PY excitatory AMPA strength
 - mAChRs increase TC→PY excitatory AMPA strength

Conclusions

- Thalamus produces Sleep Spindles (8-16 Hz) via TC cell/RE cell interactions
- Propofol Alpha Oscillations likely come from thalamic Sleep Spindle mechanisms under enhanced GABA-A inhibition
- Propofol Alpha occurs at different Slow Wave phases depending on propofol dose (Trough- and Peak-max)
- Short-term coupling: thalamocortical synapses can exhibit Trough- or Peakmax depending on immediate cortical synchronization
- Long-term coupling: Acetylcholine effects on thalamocortical synapses bias system to either Trough- or Peak-max
- Email me at austin.soplata@gmail.com!

Cycle-by-cycle coupling depends on cortical synchronization and feedback

